# Nature speaks linear algebra

In our previous post we considered a simple interferometric  experiment and claimed that quantum mechanics can account for the experimentally observed detection probabilities in the interferometer. In this post we will see how it is done. The idea was to to attach complex amplitudes to all paths available to the photon. Mathematically it can be done by borrowing tools from linear algebra, and describing  the state of the photon in terms of vectors— which can be conveniently represented as matrices. This brings us to the very first lesson.

### The states of a quantum system are described by vectors

Let’s again consider the simple Mach-Zehnder interferometer.

We can identify two paths between the source S, and the detectors D1 and D2. Let’s represent these as follows

• The  matrix $\begin{pmatrix} 1 \\ 0\end{pmatrix}$ represents the state in which the photon is on the left side of the two beam-splitters. We can note that initially when the photon is emitted from the source, it is in state $\begin{pmatrix} 1 \\ 0\end{pmatrix}$.
• The  matrix $\begin{pmatrix} 0 \\ 1\end{pmatrix}$ represents the state in which the photon is on the right side of the beam-splitters.

The photon in the state $\begin{pmatrix} 1\\0 \end{pmatrix}$ approaches the first beam-splitter. The beam-splitter splits the state of the photon in two parts. Please note here  that the splitting takes place for the state which is a vector, and not for the photon which is a physical entity.

### The splitting takes place for the state which is a vector, and not for the photon which is a physical entity.

Mathematically the beam-splitter action can be represented as follows

$\begin{pmatrix} ir & t \\ t & ir \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} =ir \begin{pmatrix} 1 \\ 0 \end{pmatrix} +t \begin{pmatrix} 0 \\ 1\end{pmatrix}$

The first 2×2 matrix in the above equation represents the action of the beam-splitter.

The next coulumn matrix is the initial state of the photon. The right side of the equation is the state of the photon after passing through the first beam-splitter.

Here we see that the moudulus square of the complex amplitudes assoicated with the two paths give us the correct reflection and transmission probabiliteies $r^2$ and $t^2$, respectively.

Also note that $i =\sqrt{-1}$ is the phase difference between the reflected and transmitted amplitudes. It comes from the requirement of unitarity of beam-splitter transformation— a concept that we will learn in another post.

After the first beam-splitter we have two mirrors which do not change the state of the photon. Finally, the photon approaches the second beam-splitter in the state $\begin{pmatrix} ir \\ t \end {pmatrix}$. The action of the second beam-splitter is given by

$\begin{pmatrix} ir & t \\ t & ir \end{pmatrix} \begin{pmatrix} ir \ \ t \end{pmatrix} =(-r^2+t^2 )\begin{pmatrix} 1 \\ 0 \end{pmatrix} +2 irt \begin{pmatrix} 0\\ 1 \end{pmatrix}$

The right hand side of the above equation yields the state of the photon after the second beam-splitter. The modulus square of the amplitudes
$(t^2-r^2)^2$ and  $4r^2t^2$ correctly give the experimentally verifiable detection probabailities of D1 and D2 detectors, respectively.

### Summary

Here is a quick review of what we have learned so far

• The state of a quantum system is described by a vector which can be represented as  a coulumn matrix. We will later see that we can also represent the states as row matrices, or using analytic  functions.
• The operations on quantum systems are carried out by operators that can be represented as square matrices.
• The modulus  square of the complex amplitudes are related to experimentally observed probabilities.

# What is quantum mechanics?

A photon approached a semi-transparent mirror and asked “Will you let me pass through?”. The mirror kept silent for a minute and then replied “I don’t know. The god has not yet rolled the dice”.

Quantum mechanics is a theory that allows us to calculate the probabilities of random events happening in the nature at the very fundamental level. The emphasis here is on the words random and the probabilities. The word random tells us that the most basic events in the nature, like excitation of an atom or the reflection of a photon by a mirror, can not be predicted. In fact nature exhibits true randomness only in the quantum world. All other apparently random phenomenon is actually pseudo-random — governed by some complicated equation or a fancy algorithm. One exception to the last statement might be the randomness of our thought processes. But it is much safer not to ponder on this question.

So, if we can’t predict any fundamental event with certainty, what we do? We calculate the probabilities of the events we are interested in. This is what nature allows us to do, and quantum mechanics teaches us how to do.

Let’s take an example. Consider a photon incident on a beam-splitter . A beam-splitter is a device that splits a beam of light into a reflected part and a transmitted part. We may ask the question whether the photon incident on the beam-splitter will be reflected back or will be transmitted through. What comes next will amaze many. The answer to this question is that we don’t know. The nature does not have the answer to this stupidly simple question (or if it has, it has not yet told us).

In a sense it is almost sacred and frightening. On one hand nature has allowed us extraordinary scientific and technological feasts. It has allowed us to decode and play with the human genome. It has let us create new life forms. It has allowed us to hear the whispers of the merging of the black holes happened in a distant past. And it has brought us to the verge of the next big step in evolution in which we might be replaced by the machines we create. Yet it does not let us answer the simple question whether the photon will pass through the beam-splitter.

Coming back to our problem, if we run the experiment — striking a photon with the beam-splitter— a large number of times, we will find that the beam-splitter reflects the photon with the probability $r^2$, and transmits it with the probability $t^2$ with $r^2+t^2 =1$. This is all we can tell about this simple experimental setup.

Let’s consider another experiment . In this one we introduce two mirrors and a second identical beam-splitter to the setup.

For this setup our intuition tells us that since both beam-splitters reflect and transmit the photon with the probabilities $r^2$ and $t^2$, respectively, the probability that the photon is detected at the detector D1 should be $r^4 + t^4$. And the probability that it is detected at D2 should be $2r^2 t^2$. However, this is not the case. If we perform the experiment a large number of times, we will see that a $(t^2-r^2)^2$ fraction of all incident photons is detected at the detector D1, and $4r^2t^2$ fraction goes to the detector D2. We see here that for $r=t$, the detector D1 will never click. Moreover, we can see that by changing the relative path length along the two arms between the beam-splitters, we can change the probabilities of detection at the two detectors all the way from zero to one. This seems very much like an interference phenomenon in which by changing the path difference between the interfering paths we can get either the constructive or the destructive interference. Indeed it is the case in our present example.

In order to account for the experimental observations, and to understand the interference phenomenon discussed above we add this rule to our theory. If a quantum system can follow different paths, it will follow all those paths. To each path we can associate a complex amplitude which tells us how likely the quantum system is to follow that path. When different path reunite we add the corresponding amplitudes. Finally at the time of the measurement (for example the detection at detector D1), the modulus square of the complex amplitude gives the probability of detection. This is how quantum mechanics accounts for how nature behaves at the very fundamental level.

The setup shown in the last example is called the Mach-Zehnder interferometer. It holds some very deep mysteries of the nature. In the future posts we will try to appreciate some of these mysteries.

# Hello World

Hello world! I am Faheel Hashmi and I wish to talk about quantum mechanics. This is a theory that describes the nature at its most basic level, and the nature at this level is very different from how we experience it in our everyday life.  I have taught quantum mechanics a couple of times, and in this blog I wish to share with you the excitement of learning this wonderful theory.

The Other Stuff portion of the blog will occasionally have posts on education system, science in general, some issues we face in our third world society, the never ending debate on mind and matter.

In time this site might transform into my personal webpage containing all my lecture notes, my research, presentations and articles related to my interests, and maybe a forum to interact with my students.

In the end I wish to introduce my crew. This includes an artist from the future who will be rendering most of the artwork for this blog. Meet my daughter Urwa. She is in grade 2, and has most generously  allowed me to use some of her artwork for my blog, and has promised to provide me the new material on regular basis. My younger daughter Ayesha will contribute to the blog by letting me do my work in peace. Lastly my wonderful wife Sidra is the main motivation and the source of encouragement for this project. She will also be proofreading my posts. So if you find typo and grammatical errors in my posts, you know who to blame.

Thanks for visiting my site. I hope you will visit it often, and will find the content on this site worth your time.